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Frequency-Domain Bivariate Generalized Power
Series Analysis of Nonlinear Analog Circuits

PHILIP J. LUNSFORD II, STUDENT MEMBER, IEEE,
GEORGE W. RHYNE, MEMBER, IEEE, AND
MICHAEL B. STEER, MEMBER, IEEE

Abstract —Bivariate generalized power series analysis is introduced
for the analysis and behavioral modeling of nonlinear analog circuits
and systems. It can be used to model analog subsystems and is compati-
ble with circuit simulation. Thus full circuits and behaviorally modeled
analog subcircuits can be simulated together in an analog circuit/system
simulator. The entire analysis is performed in the frequency domain,
and arbitrary nonlinear circuits and any number of noncommensurable
input frequencies can be handled. A diode ring demodulator is analyzed
as an example.

I. INTRODUCTION

The simulation of complex analog circuits using harmonic
balance and spectral balance techniques has developed rapidly
in recent years. The analysis of nonlinear analog systems using
behavioral modeling of nonlinear subsystems is less advanced,
with Volterra series system analysis being the dominant method
[1). This technique, however, is limited to mildly nonlinear
systems.

In this paper we present a frequency-domain modeling method
that is an extension of the generalized power series analysis
(GPSA), introduced by Steer and Khan [2]. GPSA is a fre-
quency-domain simulation technique based on power series that,
in general, can contain complex coefficients. However, GPSA
can only be used with elements or systems having a single
voltage or current controlling excitation. The bivariate GPSA
introduced here can be used with elements or subsystems that
have two controlling quantities and is more general than the
power series method proposed by Narhi [3].

As an.example, we present a behavioral model for a diode
ring mixer. This mixer, shown in Fig. 1, can be analyzed using a
univariate power series to describe the current-voltage charac-
teristics of each diode, but this method requires the use of
iterative techniques to satisfy Kirchhoff’s voltage and current
laws for the circuit [4]. The behavioral model presented here can
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Fig. 1. Diode ring mixer.

be used as a voltage-controlled voltage source in a GPSA
simulator such as FREDA [4] or in a block system simulator
such as CAPSIM [5].

II. DEVELOPMENT OF ALGEBRAIC FORMULAS

In this section we derive an algebraic formula for the output
components of a nonlinearity which can be described by a power
series in two variables having complex coefficients and fre-
quency-dependent time delays when the inputs are sums of
sinusoids.

A nonlinear element or system having the two multifrequency
inputs x(z) and z(¢) (each having N components),

N N
()= L 0 (1) = X | X;lcos (wyt + ) (1)
k=1 k=1
and
N N
2(1)= Y, 2 (1) = X 1Zlcos (wyt +6;) ()
k=1 k=1

can be represented by the bivariate generalized power series

00 )

(i)=Y X a,,f(o.x)g(p,z) (3)
oc=0p=0
with
. -
flo.x)= ( > bkxk(t“Tk,a)) (4)
k=1
and

N 14

g(p,z)==( Y dkzk(’_’\k,p)) . (%)
k=1

In these expressions, @, , is a complex coefficient, b, and d
are real, and 7, , and A, , are time delays that depend on both
the order of the power series and the index of the input
frequency components. Our aim is to rewrite (3) in terms of
phasors. The x input can be expressed as

X (8 =7 o) =X, |cos (0t + by — w7y )

(6)

1 1
= X 0+ S KT e
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where X, is the phasor of x,(¢) and

[y, =e ko, @)
Similarly, for the other input z(¢), we write
2t =M ,) =1Zcos (@it +0, —w Ay L)
1 1
= —Z—Zka!pef‘”k’ + EZ,;" T e o (3)
where Z, is the phasor of z,(¢) and
Ty, = e T8, )

Using the multinomial expansion theorem [6], we write (4) as
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lation order is n, where n=X}_;|n,| Letting (p, + q;) equal
the larger of (/, +1i,) and (m, + j,), and (r, +s,) equal the
smaller, we have p, +q, —r, — s, =|n,| where p,,q;,7,, and
s, = 0.

For a given set of n,’s specifying an individual intermodula-
tion product (IP), the relevant components of (o, x)g(p,z) can
be written as the sum of two terms (for »n # 0):

(lC)e""q’ + (lC)*e*""qt
2 2

1

_ (E

1

f(o.x)
. =U;, w,=0 (12)
= Y {[exp(j Y (lk—mk)wkt)}a! where
— k=1
I, ly,mpy e s 1\77°
po DL c=2 » {(3) owe} a9
1 lo+my P12 s PNsTL TN 2
M I N I N G1> © S9NS1," TSN
v (58] Gt @A) R
1_[ I tm ! 41" tgntsit o tsy=p
k=1 IO Prt Qe 1~ Sp =gl
(10)  and with
NPr A+ +3 p 7 q, $, P Tk 9k Sk
o - [ "™ D) (X (D)™ (28 (T.0) ™ (T) " (1,) (1) (14)
_ Ir.lag. ls, ! ’
k=1 PriTi g Sy
where the summation is over all combinations of the integers Here we define
I, ly,my, -, m, such that ¥&_ [, + m, = ¢. Similarly, we . (X, forn, >0
can expand (5), and the product of f and g becomes Xi= { X for 1. <0
K k
f(o,x)g(p.2) and
N X X for n, >0
. . K=
= Z [exp(] ¥ (I +1i, X, for n, <0.
lxlllzzerr;i;r}lVN k=1 (z}, z}, 1] ,, T .. T ,. and T} , are similarly defined.) Thus,
C forw, +0
L+ - +iy+m+ - +my=0 g
ot Fint it iv=p Uy = (15)

—my, —jk)wkt”a!p!\lf

where

1
? F(C+C")=Re(C) for n# 0 and w, = 0.
Note that U] is the contribution to f(o,x)g(p,y) of one IP.
When the two terms in (12) occur for n# 0, p, and g, replace
two sets of iy, ji, I, and my, one set corresponding to ([, +i;)

1 L+ my 1 [P ; ” ; .
w3t (34) 0RO @@L ) (0, ()

and the above summation is over all combinations of the non-
negative integers [, m, i, and j such that EkN=1lk +m, =0 and
YN i, +j.=p. As with the single-variable power series, the
frequency of each component is

N

w= Z npwg
k=1

(11)

where n; is a set of integers, an intermodulation product
description (IPD) where n, =1, +i, — m; — j,. The intermodu-

Lm Y1, !

> (my + j,), resulting in the e/®s’ term and the other corre-
sponding to (I, +i,) <(m + j,), resulting in the e7*¢" term.
For n =0 there is only one set corresponding to ({, +i.)=(m,
+ ji)- Thus, the Uy expression is half that in (15) for the case
n=0. For (15) to hold we make the restriction that no IPD be
equal to the negative of another IPD. If U, is the component of
Y due to a single intermodulation product, then

U= 2 a,,U.

ag=0p=0

(16)
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Using the Neumann factor, €,(e, =1, n =

U,=Re{e,T},,

0;¢€,=2, n*0),
(17)

where Re{ }, is defined such that it is ignored for o, * 0 but
for w,=0 the'real part of the expression in brackets is taken. In
an
il alpla, ,
-x > {(Fe=z)e} a9
a=0 Pis s PNsFL PN .
915" GN> ST SN
Smame—— ot
it Fpytat o tiry=0
QF gyt st tsy=p

Pt qe— e~ Sk = |ngl
ot+p=n+la

and @ is given by (14). The phasor of the w, component of the
output y(t) is then given by

o

Y= X r U,

n=20 ny,t

(19)
[ry]+ -+ +iny|=n

We have thus derived an algebraic formula for the output of a
bivariate power series having two multifrequency inputs. These
formulas reduce to those presented in [2] for a single variable
power series with the elimination of the appropriate variables
- and subsequent grouping of terms.

III.

An example of a circuit that can be modeled using bivariate
generalized power series analysis is the diode ring mixer shown
in Fig. 1. In order to calculate a behavioral model for this entire
circuit, we need to find an approximation to the output voltage
Vig as a function of the two input voltages Vg and Vig.
Moreover, this approximation needs to be in the form of (3).
Thus we will model the entire circuit as a two-input voltage-con-
trolled voltage source.

The current-voltage relationship for the individual diodes is
modeled by the Shockley diode equation:

I; =\10j(el/j/y’ -1)

ExampLe: A Diobe Ring MIXER

where I; is the current through diode D;,V; is the voltage across

» Vi=nkT /q, Iy, is the saturation current for diode j,T is

the junction temperature, k is Boltzmann’s constant, and n is

the ideality factor.
Assuming that the transformers are ideal, the KCL and KVL
equations for this circuit reduce to

1 1 :
Vl(t)ZEVLO(t)—‘Z‘VRF(t)_VIF(f) (21)
V(D)= 3Ho(0+ TV + VD) (@)
Vs(t) 1VRF(t) 1VLO(t) Vie(t) (23)
VO =Vl = 3Vio(D)~ 3Var()  (24)

Vis(t)
11(’)_120)"‘130)“14(t)“R—IF=0~ (25)

The explicit notation of time (¢) will be dropped for simplifica-
tion.

0
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Fig. 2. Conversion gain for different LO power levels. Solid lines are
bivariate GPSA calculations. Circles are ASTAP (time-domain simulation)
calculations. Dashed lines are the first two terms of the decomposxtlon of
the solid line for P = 2.0 dBm. (a) is the constant term: RFP. () is the
second-order term: RF2,

Equations (21)-(25) were solved for V;z by means of the
computer-algebra program MAPLE [7] to perform the algébra
and calculus operations. Although all of the operations are
straightforward, some of the equations are so large that manual

. calculations ar¢ impractical. As an intermediate step, a function

f having the desired solution at f= 0 was obtained:
f = Iyy(e/2V001/2Vee=Vie)/ Vi _ 1)
— Iop(e0/ ot 1/ WartVie)/ Vi _ 1)
+ Loy(e0/2VRE=1/2Vi0=Vir)/ Vi 1)
Vie

— ]04(e(VIF—1/2VL0*1/2VRF)/V1 — 1) -

e

Since we want a closed-form solution for Vg, we now estimate f
by a third-degree Taylor series in VIF
f=f(Ve=0)+f(Vig=

O)VIF+ f”(Vn: 0)Vi:

(27)

This third-order polynomial in Vi can be solved in closed form
[6]. In general, of the three solutions to this third-order equa-
tion, two are complex and one is real: Using the real solution,
we get a very large equation which we will call g. The full

+ gf "(Vig = 0)Vi.

- solution of g is too large to be included here, but g has the’

form Vig = g(Vie, Vi6s Logs Loz5 L3> 1045 Vy), to which a bivariate
power series of the form

3>

o=0p=0

g(VreVio) = aa,pVEFVﬁo

- (28)
can be fitted using least-square techniques over a given range.
Thus (28) has the form of (3) with b, =1, ., =0, d, =1, and
Ag,, = 0. For our investigation we used the voltage ranges —0.6
<V <0.6 and —0.2 <Vyp <02, and the rms fit error was
less than 1%. For the ring mixer of Fig. 1, n=1, I;; = 1.00 pA,
I, =1.01 pA, I;3=1.03 pA, I,,=1.06 pA, V,=0.02569 V, and
the transformers are ideal and have 1:1 turns ratios. The solid
lines in Fig. 2 give the steady-state conversion power gain of
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P / Prp for several LO powers. Since the power series (28) is
valid only for a given range of the inputs, the macromodel is
only valid within that range. The circles are simulation results
using the time-domain simulator ASTAP [8], and show good
agreement.

IV. TraNSFER CHARACTERISTICS

The dashed lines in Fig. 2 demonstrate an important property
of bivariate GPSA. Since the summation given by (19) contains
powers of the phasor components as given by (14), any arbitrary
input—ouptut transfer characteristic is of the form

Y, = ZHzJ(XJ) (29)

where H, ; is an ith-order nonlinear transfer function for the
input phasor X, (or set of X,’s). In general, H, , is a function of
the other input phasors. The dashed lines in Fig. 2 give (a)
first-order, H,, and () third-order, H,, transfer characteristics
for the IF phasor when P;o=2.0 dBm. In our example, the
even-order transfer functions are zero. Note that in Fig. 2, the
vertical axis is gain, not output amplitude; thus the lines repre-
sent the zeroth-order and second-order transfer characteristics
for the gain, corresponding to the first- and third-order transfer
characteristics for output amplitude. For the range modeled, all
higher order transfer functions are negligible. Adding (a) and
(D) yields a value within 1% of the total characteristic (solid
line) shown for P, , = 2 dBm. Thus a simple behavioral model is
obtained by using only lower order powers of the input. Here,
the nonlinear RF to IF characteristics can be described by the
sum of two components. Each component can be represented as
a linear function when expressed in log—log form.

V. CoNCLUSION

The algebraic formula for the output of a nonlinearity de-
scribed by a bivariate generalized power series having multifre-
quency inputs has been developed. These formulas enhance the
capabilities of generalized power series analysis by allowing
nonlinear functions of two variables to be considered in a
general way. An example of a ring mixer has shown the practi-
cality of this kind of analysis.
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Modeling of Asymmetric and Offset Gaps in
Shielded Microstrips and Slotlines

ANIMESH BISWAS, MEMBER, IEEE, anp VIJAI K. TRIPATHI,
SENIOR MEMBER, IEEE

Abstract —A  generalized model for characterizing the frequency-
dependent properties of general symmetric, asymmetric, and offset gaps
in microstrips and slotlines on a single-layer or multilayer dielectric
medium is presented. The transverse resonance technique is applied in
the spectral domain to extract the equivalent circuit model parameters
of the discontinuities. This technique incorporates the end effect of the
discontinuity by a compatible choice of basis functions.

I. INTRODUCTION

The characterization of symmetric and asymmetric gaps in
microstrips and slotlines has been the subject of considerable
interest in recent years since a knowledge of these discontinuity
parameters is required for an accurate design of resonator
elements and multiresonator filter circuits. The offset gaps in
microstrips and slotlines provide an additional degree of free-
dom in terms of layout and design of coupled resonator filters.
In addition, the analysis can also be helpful in estimating the
coupling between offset coplanar conductors and slots in high-
density microwave and millimeter-wave integrated circuits. A
rigorous analysis for symmetric and asymmetric gaps in mi-
crostrips on suspended substrate has been presented by Koster
and Jansen [1]. The accuracy of the method depends primarily
on the choice of basis functions and can be verified by suitable
experimental data. Experimental data for the end effect of
open-ended slotline have been presented by Knorr [2]. This
paper gives a general analysis of the gap discontinuities in both
microstrip and slot structures, including offset gaps. The tech-
nique is based on an application of the transverse resonance
technique proposed by Sorrentino and Itoh [3]. Here, the fields
in various regions of the cavity are expanded in terms of hybrid
modes whereas the slot fields and strip currents are expressed in
terms of simple yet accurate basis functions. The validity of this
type of basis function has been affirmed experimentally for the
case of finline gap discontinuities [4].

II. TuHEORY

The cross-sectional and longitudinal views of the general gap
discontinuities in shielded microstrips and slotlines and their
equivalent circuits are shown in Figs. 1 and 2. The electric and
magnetic fields are expanded in terms of hybrid modes in each
region and then the application of the boundary conditions at all
the interfaces leads to the Green’s dyadic as given in [4]. This is
followed by the application of the Galerkin procedure in the
transform domain, leading to a set of homogeneous equations as
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