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Abstract —Bivariate generalized power series analysis is introduced

for the analysis and behavioral modeling of nonlinear analog circnits

and systems. It can be nsed to model analog subsystems and is compati-

ble with circuit simulation. Thus full circuits and behaviorally modeled

analog subcircuits can be simulated together in an analog circuit\system

simulator. The entire analysis is performed in the frequency domain,

and arbitrary nonlinear circuits and any number of noncommensurable

input frequencies can be handled. A diode ring demodulator is analyzed

as an example.

I. INTRODUCTION

The simulation Qf complex analog circuits using harmonic

balance and spectral balance techniques has developed rapidly

in recent years. The analysis of nonlinear analog systems using

behavioral modeling of nonlinear subsystems is less advanced,

with Volterra series system analysis being the dominant method

[I]. This technique, however, is limited to mildly nonlinear

systems.

In this paper we present a frequency-domain modeling method

that is an extension of the generalized power series analysis

(GPSA), introduced by Steer and Khan [2]. GPSA is a fre-

quency-domain simulation technique based on power series that,

in general, can contain complex coefficients. However, GPSA

can only be used with elements or systems having a single

vQltage or current cQntroIling excitation. The bivariate GPSA

introduced here can be used with elements Qr subsystems that

have two controlling quantities and is more general than the

power series method proposed by Narhi [3].

As an, example, we present a behavioral model for a diode

ring mixer. This mixer, shown in Fig. 1, can be analyzed using a

univariate power series to describe the current-voltage charac-

teristics of each diode, but this method requires the use Qf

iterative techniques tQ satisfy Kirchhoff’s voltage and current

laws for the circuit [4]. The behavioral model presented here can
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Fig. 1. Diode ring mixer.

be used as a voltage-controlled voltage source in a GPSA

simulator such as FREDA [4] or in a block system simulator

such as CAPSIM [5].

II. DEVELOPMENT OF ALGEBRAIC FORMULAS

In this section we derive an algebraic formula for the Qutput

components of a nQnlirlearity which can be described by a power

series in two variables having complex coefficients and fre-

quency-dependent time clelays when the inputs are sums of

sinusoids.

A nonlinear element or system having the two multifrequency

inputs .x(t) and z(t) (each having N components),

N N

x(t) = ~ l~(t) = ~ lx~lcos(@~t+@J (1)
k=l k=l

and

N N

z(t) = ~ Zk(z) = ~ Izklcos(tikt+ok) (2)
k=l k=l

can be represented by the bivariate generalized power series

y(t) = ~ ~ aa,pf(a,x)g(p,z)
U=op=o

with

(
.

f(~,~) = f bkxk(t-rk,a)

k=l )

and

( )
P

g(P, z) ‘= ; ~kZk(t –&o) .

k=l

(3)

(4)

(5)

In these expressions, ar, p iS a COmpleX Coefficient, bk and dk
are real, and T~,~ and Ak, ~,are time delays that depend on both

the Qrder of the power series and the index Qf the input

frequency components. Our aim is to rewrite (3) in terms of

phasQrs. The x input can be expressed as

Xk(t ‘7k, o) = lxklcos(”k~+dk – ‘kTk, a )
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where Xk k the phasor of xk(t) and lation order is n, where n = Z:= ~ln~l. Letting (p~ + q~) equal

r = ~ ‘jwkTh, m. (7)
the larger of (1~ + i~) and (m~ + j~ ), and (r~ + Sk) equal the

k,u smaller, we have pk + qk – rk –s~ = Inkl where Pk, qk> ‘k, and

Similarly, for the other input z(t), we write Sk >0.

zk(~–&, p) = lHcos(@k~+% –Wh,p)
For a given set of n~’s specifying an individual intermodula-

tion product (1P), the relevant components of ~(cr, x)g(p, z) can
1

= –Z T e]mkt + ~Z~ Tk*Pe”JWk< (8)
be written as the sum of two terms (for n + O):

~ k k,p

where Z~ is the phasor of zk(t)and

Tk ~ = e ‘WJ,Ak>p ,9) (:c)e’m’’+(:c)’e-’oq

Using the multinominal expansion theorem [6], we write (4) as

‘(:”~)e’oq’+(:u~)’e-’oqf ‘q#O
f(u, x)

=U; , coq=o

{[ (
N—. \:/

)1
exp j ~ (l~–mk)~kt u! where

k=?

1,,. ,lN, ml,.. ,mN

n+. .+l~+ml+. +m~=u C=2 E

()

Ik+ m~ pl . . . ..pN. r1.. .,rN

[

~b~ (xk)’k(x~)m’(rk, a) ’k(r~:a)mk

))

ql>\ >q.A/.~1,...,~Af/

“Jl,
p,+. +p~+rl+. ..+r N=m

lk!m~!
q~.. +q’&.+Y~+. ..+sN=p

pk + qk – r~ – Sk = I?lkl

(10) and with

(12)

(H+’u’’”o}’13)

N (b,)pk+rk(d,)
o=~

'`+'' (x;)pk(x;)'k(zj) qk(z:)sk(rJ,a)pk( r;,u)rk(TJ,p)qk( T;,p)sk

k=l pk!rk!qk!sk!
(14)

where the summation is over all combinations of the integers Here we define

11>”” ‘,l~, ml,”.. , mn such that E~= ~1~+ m~ = U. Similarly, we

(

for nk >0
can expand (5), and the prQduct of f and g becomes

xl= ‘k
x: for nk <0

f(a,x)g(p,z)

——
z.

1~, .,lN, ml.. .,mN

‘l, ”””. iN, }l>”’”, JN

1,+ +lN+?nl+. .+m N=u

L,+. ..+iN+jl+JN=+JN= p

where

and

[(

N

(

Xk. for n~ >0
x:.

exp j ~ (1~ +ik Xk for nA <O.

[

u;= 1
~(C+C*)=Re(C) for n # O and Wq = O.

(15)

Note that U; is the contribution to f(u, x)g(,p, y) of one 1P.

When the two terms in (12) occur for n # O, p,. and qk replace

two sets of i~, jk, lk, and mk, one set correspor[ding tO-(lk-+ ik)

~=fi (:bd’k+’nk(:dk)’k+’k(xk)'`(x~)m'(zk) '`(z~)''(rk,m)'' (r~v)m`(Tk,p)'' (~~p)J`

k=l lk!mk!ik!jk!

and the above summation is over all combinations of the non- > (mk + jk), resulting in the e~mqt term and tlhe other corre-

negative integers 1, m, i, and j such that Z:= Ilk + mk = u and spending to (lk + ik) < (mk + jk), resulting in the e ‘~”qt term.

~~= ~ik + jk = p. As with the single-variable power series, the For n = O there is only one set corresponding to (lk + ik) = (mk

frequency of each component is + jk). Thus, the U/ expression is half that in (15) for the case

N
n = 0. For (15) to hold we make the restriction that no IpD be

w = ~ nkwk
equal to the negative of another IPD. If Uq is the component of

’11) Y due to a single intermodulation product, then
k=l

where ttk is a set of integers, an intermodulation product

description (IPD) where n~ = lk + ik – m~ – jk. The intermodu-
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Using the Neumann factor, •n(c~ = 1, n = O; e.= 2, n # O), ~

U~ = Re {enT}@, (17)

where Re { }o~ is defined such that it is ignored for Oq # O but

for Oq = O the real part of the expression in brackets is taken. In

(17)

pi+. .+p N+rl+. ..+r N=w

ql+. .+q N+sl+. +sN=p

p~+q~–r~–sk=lnkl

u+p=n+2a

and @ is given by (14). The phasor of the COqcomponent of the

output y(t) is then given by
m

Yq= ~ z Uq. (19)
~=o nl, ... nN

—
Inll+ ~~~ +lnNl=n

We have thus derived an algebraic formula for the output of a

bivariate power series having two multifrequency inputs. These

formulas reduce to those presented in [2] for a single variable

power series with the elimination of the appropriate variables

and subsequent grouping of terms.

III. EXAMPLE: A DIODE RING MIXER

An example of a circuit that can be modeled using bivariate

generalized power series analysis is the diode ring mixer shown

in Fig. 1. In order to calculate a behavioral model for this entire

circuit, we need to find an approximation to the output voltage

VI~ as a function of the two input voltages V~o and VR~.

Moreover, this approximation needs to be in the form of (3).

Thus we will model the entire circuit as a two-input voltage-con-

trolled voltage source.

The current–voltage relationship for the individual diodes is

modeled by the Shockley diode equation:

Ij = Zoj(e~/v’ –1) (20)

where Ij is the current through diode Dj, ~ is the voltage across

Dj, ~ = qkT/ q, Zoj is the saturation current for diode j, T is

the junction temperature, k is Boltzmann’s constant, and q is

the ideality factor.

Assuming that the transformers are ideal, the KCL and KVL

equations for this circuit reduce to

v,(t) = ;vLo(t)–-)7RF(t)-vlF(t)(21)

v2(t) = ;vLo(t)+;vRF(t)+vlF(t) (22)

v3(t) = ;vRF(t)–:V=o(t)–v+) (23)

v4(t) =vlF(t)– #’Lo(t)–;vRF(t) (24)

vlF(t) no
Ii(t)– 12(t) +13(t)– 14(t)– ~ (25)

IF

The explicit notation of time (t) will be dropped for simplifica-

tion.
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Fig. 2. Conversion gain for different LO power levels. Solid lines are

bivariate GPSA calculations. Circles are ASTAP (time-domain simulation)

calculations. Dashed lines are the first two terms of the decomposition of

the solid line for P=o = 2.0 dBm. (a) is the constant term: RFO. (b) is the

second-order term: RF2.

Equations (21)–(25) were solved for VI~ by means of the

computer-algebra program MAPLE [7] to perform the algebra

and calculus operaticms. Although all of the operations are

straightforward, some of the equations are so large that manual

calculations are impractical. As an intermediate step, a function

f having the desired solution at f= O was obtained:

f= ~ol(ecl/2vL0--l/21’’RF-vIF)/V,– 1)

_ 102(#/2vL o+ 1/2vRF~l“[F)/v,—1)
+ ~03(e(l/2vRF- 1/2vL0-‘lF)/ ‘, – 1)

_ ~04(e(v1F-1/2v );.LO– l/2vRF)/U_ 1 _ > (26)
IF

Since we want a closed-form solution for VIF, we now estimate f
by a third-degree Taylor series in VI~:

f= f(v,, =o)+f’(v,, =o)v,, +: f’’(v,, =o)v;

+ :f “’(VIF = O) V&. (27)

This third-order polynomial in VIF can be solved in closed form

[61. In general, of the three solutions to this third-order equa-

tion, two are complex and one is real. Using the real solution,

we get a very large equation which we will call g. The full

solution of g is too large to be included here, but g has the

form VIF = g(VRF, VL(], 101,Z02,103,1.1,K), to which a bivariate
power series of the form

99

g(vRF, VLO) = ~ ~ ua, pv&vf’o (28)
~=op=o

can be fitted using least-square techniques over a given range.

Thus (28) has the form of (3) with bk = 1, Tk,a =0, dk = 1, and

h~,p = 0, For our investigation we used the voltage ranges – 0.6

< VLO <0.6 and – 0.2< VRF <0.2, and the rms fit error was

less than 1%. For the ring mixer of Fig. 1, q =1, 101= 1.00 pA,

102 = 1.01 pA, 103= 1.03 pAj 104= 1.06 pA, ~ = 0.02569 V, and

the transformers are ideal and have 1:1 turns ratios. The solid

lines in Fig. 2 give the steady-state conversion power gain of
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PI~ /P~F for several LO powers. Since the power series (28) is

valid only for a given range of the inputs, the macromodel is

Qnly valid within that range. The circles are simulation results

using the time-domain simulator ASTAP [81, and show good

agreement.

IV. TRANSFER CHARACTERISTICS

The dashed lines in Fig. 2 demonstrate an important property

of bivariate GPSA. Since the summation given by (19) contains

powers of the phasor components as given by (14), any arbitrary

input–ouptut transfer characteristic is of the form

y,= Df’,, (x,) (29)

where H,,l is an ith-Qrder nonlinear transfer function for the

input phasor Xl (or set of X,’s). In general, H,,l is a function of

the other input phasors. The dashed lines m Fig. 2 give (a)

first-order, H,, and (b) third-order, H3, transfer characteristics

for the IF phasor when PLO = 2.0 dBm. In our example, the

even-order transfer functions are zero. Note that in Fig. 2, the

vertical axis is gain, not output amplitude; thus the lines repre-

sent the zeroth-order and second-order transfer characteristics

for the gain, corresponding to the first- and third-order transfer

characteristics for output amplitude. For the range modeled, all

higher order transfer functions are negligible. Adding (a) and

(b) yields a value within 1% of the total characteristic (solid

line) shown for PI,O = 2 dBm. Thus a simple behavioral model is

obtained by using only lower Qrder powers of the input. Here,

the nonlinear RF to IF characteristics can be described by the

sum of two components. Each component can be represented as

a linear function when expressed in log–log fQrm.

V. CONCLUSION

The algebraic formula for the output of a nonlinearity de-

scribed by a bivariate generalized power series having multifre-

quency inputs has been developed. These formulas enhance the

capabilities of generalized power series analysis by allowing

nonlinear functions of two variables to be considered in a

general way. An example of a ring mixer has shown the practi-

cality of this kind of analysis.
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Modeling of Asymmetric and Offset Gaps in

Shielded Microstrips and Slotlines

ANIMESH BISWAS> MEMBER, IEEE, AND VIJAI K. TRIPATHI,

SENIOR MEMBER, IEEE

Abstract —A generalized model for characterizing the frequency-

dependent properties of general symmetric, asymmetric, and offset gaps

in microstrips and slotlines on a single-layer or multilayer dielectric

medium is presented. The transverse resonance technique is applied in

the spectral domain to extract the equivalent circnit model parameters

of the discontinuities, This technique incorporates the end effect of the

discontinuity by a compatible choice of basis functions.

I. INTRODUCTION

The characterization of symmetric and asymmetric gaps in

microstrips and slotlines has been the subject of considerable

interest in recent years since a knowledge of these discontinuity

parameters is required for an accurate design of resonator

elements and multiresonator filter circuits. The offset gaps in

microstrips and slotlines provide an additional degree of free-

dom in terms of layout and design of coupled resonator filters.

In addition, the analysis can also be helpful in estimating the

coupling between offset coplanar conductors and slots in high-

density microwave and millimeter-wave integrated circuits. A

rigorous analysis for symmetric and asymmetric gaps in mi-

crostrips on suspended substrate has been presented by Koster

and Jansen [I]. The accuracy of the method depends primarily

on the choice of basis functions and can be verified by suitable

experimental data. Experimental data for the end effect of

open-ended slotline have been presented by Knorr [2]. This

paper gives a general analysis of the gap discontinuities in both

microstrip and slot structures, including offset gaps. The tech-

nique is based on an application of the transverse resonance

technique proposed by Sorrentino and Itoh [3]. Here, the fields

in various regions of the cavity are expanded in terms of hybrid

mQdes whereas the slot fields and strip currents are expressed in

terms of simple yet accurate basis functions. The validity of this

type of basis function has been affirmed experimentally for the

case of finline gap discontinuities [4].

II. THEORY

The cross-sectional and longitudinal views of the general gap

discontinuities in shielded microstrips and slotlines and their

equivalent circuits are shown in Figs. 1 and 2. The electric and

magnetic fields are expanded in terms of hybrid modes in each

region and then the application of the boundary conditions at all

the interfaces leads to the Green’s dyadic as given in [4]. This is

followed by the application of the Galerkin procedure in the

transform domain, leading to a set of homogeneous equations as
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